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Abstract-An efficient integral profile computational method is used to solve the problem of the solidi- 
fication of highly subcooled droplets. The effects of surface cooling by radiation and convection, interface 
crystallization kinetics and fully time-dependent heat conduction are included in the method. Particular 
attention is focused on the predicted drop surface temperature-time histories as these, together with 
available experimental luminosity-time traces for solidifying microspheres of Al,Oz and ZrO,, are used 
to infer the coefficient of the kinetic law for AllO crystallization-one of the crucial parameters in a 

recently proposed theory of underwater aluminum ignition. 

INTRODUCTION 

NELSON and his co-workers [l-3] have shown that 
pendant drops or freely falling microdrops melted by 
pulse heating offers an attractive method of studying 
the solidification of highly supercooled refractory 
materials. Systematic observations on the behavior of 
the drops, including specimens (Zr) that have reacted 
chemically with a component of the ambient gas mix- 
ture, reveal interesting freezing behavior. The drops 
are observed to remain liquid well below their equi- 
librium freezing points, with surface solidification 
commencing abruptly when some threshold (or ‘cri- 
tical’) supercooling is attained. Owing to the release 
of latent heat the surface temperature (or luminosity) 
of the drops rises abruptly, passes through a 
maximum, and then falls off at a rate indicating that 
the internal solidification process is not complete. 

Because measurements of this sort offer the possi- 
bility of inferring the crucial, but unknown kinetic 
parameter(s) for highly refractory metal oxide sub- 
stances, Rosner and Epstein [4], initiated a theoretical 
study of ‘nonequilibrium solidification’. The non- 
equilibrium theory differs from the common solidi- 
fication analysis in that interface (liquid-to-solid 
phase) attachment kinetics is important and results in 
the interface temperature being lower than the fusion 
temperature. The Rosner-Epstein study was limited 
to the case of semi-infinite geometry (or, equivalently, 
large droplet sizes) in which the surface temperature 
of the drop is assumed to pass through its maximum 
value before the leading thermal wave is an appreci- 
able fraction of the sphere radius. Moreover, the 
solidification rate laws employed in their study are 
valid only for low-to-moderate supercooling for which 
the crystallization velocity increases with increasing 
supercooling and, therefore, can not be used to follow 
the solidification event in a highly supercooled (or 

‘hypercooled’) liquid drop. At very high supercoolings 
the crystallization velocity actually decreases with 
increasing supercooling and asymptotically ap- 
proaches zero as the absolute zero of temperature 
is approached. Accordingly, we have extended the 
Rosner-Epstein [4] analysis to include both curvature 
effects in a spherically symmetric system and a kinetic 
rate law that exhibits the correct crystallization speed 
behavior over the entire range of possible super- 
toolings, from the absolute zero of temperature up to 
the melting point. To the best of the authors’ knowl- 
edge there have been no previous theoretical treat- 
ments of combined heat-conduction- and kinetic- 
controlled solidification of super-cooled droplets. 

KINETIC LAW OF SOLIDIFICATION 

(CRYSTAL GROWTH) 

When the liquid/solid interface is near-planar on a 
microscopic scale (i.e. non dendritic) the dependence 
of the interface velocity vi on the temperature Ti at the 
liquid/solid interface can take a number of distinct 
forms. Among the most important is an exponential 
law of the form 

X{l-exp[-E(+--l)]}. (1) 

The above expression was developed by Jackson and 
Chalmers [5] by considering the probability that a 
molecule will make a transition from solid to liquid, 
or liquid to solid, across the liquid/solid interface (or 
moving solidification front). The coefficient 1.5 in the 
argument of the leading exponential term in equation 
(1) is based on Jackson and Chalmers’ [5] estimate of 
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NOMENCLATURE 

A crystallization wave speed parameter, TX temperature of ambient medium 

equation (1) W dimensionless crystallization wave speed 

Bi Biot number for convective heat loss, parameter, AR/z, 

hRlk z dimensionless location of solid/liquid 

Bi, Biot number for radiative heat loss, interface (solidification front), t/R. 

s~XpW(k,M 
c mr c, specific heats of melt and solid, Greek symbols 

respectively c(,, E, thermal diffusivities of melt and solid, 

h convective heat transfer coefficient respectively 

hrs latent heat of fusion CI melt-to-solid thermal diffusivity ratio, 
H dimensionless latent heat of fusion, ~“,I& 

hrsl(c,T,,) 80 drop supercooling ratio, To/T,,,, 

J, dimensionless frozen layer heat content, jYT_ dimensionless ambient temperature, 

c,/(h,,R3)‘~~Y2[T,(~,t)--T,]dr TJT,, 
J2 dimensionless melt layer heat content, 8X dimensionless ambient temperature, 

c,/(h,,R3).S~r2[T,(r,1)-T,]dr TX,, 
k melt-to-solid thermal conductivity ratio, 8 radial location of thermal wave 

k,,lk, A dimensionless radial location of thermal 
k,,, k, thermal conductivities of melt and solid, wave, 6/R 

respectively s emittance of drop surface 

M molecular weight of solidifying material 0, dimensionless temperature at center of 

n exponent in radiation heat-flux law, drop, c,P’,(t) - T,llh, 
equation (6) 0, dimensionless temperature at solid/liquid 

Q dimensionless activation energy for interface, c,[T,(t) - To]/hr, 

solidification, h,,M/(R,T,,,,) 0 w,mllx maximum dimensionless temperature 
r radial location measured from center of at surface of sphere 

drop 0 

mp 

dimensionless equilibrium melting point, 
R radius of solidifying drop (1 -/Q/H 

R, ideal gas constant 0, dimensionless temperature at surface of 
t time sphere, 0,(t) - Tollhrs 
TC temperature at center of drop (r = 0) 5 radial location of solid/liquid interface, 

r, temperature at solid/liquid interface Fig. 1 
(r = 5) P density of melt or solid 

T”, temperature profile in melt region 0 Stefan-Boltzmann radiation constant 
T m* equilibrium melting point temperature r dimensionless time, x-t/R’ 

T” initial temperature of supercooled drop X temperature profile shape function for 

T, temperature profile in solid region solid region (dimensionless), equation 

TW temperature at surface of sphere (r = R) (7). 

the ‘transition energy’ for the solidification of metals. 
It is assumed here that their estimate is equally valid 
for refractory metal oxides. Equation (1) was chosen 
over other proposed kinetic laws in that it provides a 
physical basis for estimating U, over the entire range 
of possible interface temperatures T,, from absolute 
zero up to the melting point. (A discussion of less 
complex solidification kinetic laws can be found in ref. 
[4].) A special application of equation (1) of interest to 
the authors applies to Al,O, spheres (crystals) grow- 
ing in Al,O, melts with initial undercoolings as large 
as 1300 K. Note that this supercooling is much larger 
than what is normally possible by rapid heat loss, 
namely ~0.2 T,,,p (Turnbull and Cech [6]), and is 
postulated to occur as a result of a sudden chemical 
transition (oxidation) from molten aluminum to 

metastable Al,O, microdrops (Epstein and Fauske 
[7]). The parameter ‘A’ in equation (1) is related to 
the mobility of the liquid molecules at the solidi- 
fication front. Least is known (a priori) about this 
‘solidification wave speed parameter’ and, conse- 
quently, its numerical value for Al,O, constitutes the 
result sought. 

A careful examination of equation (1) shows that 
the solidification speed v, first increases with increasing 
subcooling T,,,,, - T,, reaches a peak value when the 
supercooling is sufficiently high (-400 K for Al,O,) 
and tends to zero at the maximum possible under- 
cooling corresponding to a melt region at absolute 
zero (r, = 0 K). This behavior has been observed 
for a select group of substances (mostly organics); 
however, there seems to be no strong theoretical 
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reason to doubt the generality of the shape of the 
curve produced with equation (I), (see, e.g., Knight 

[W. 
In terms of determining the unknown coefficient ‘A’ 

in equation (1) two alternatives present themselves. 
One might try to cool the liquid material rapidly 
enough to get into the low temperature regime where 
the rate of growth of the solid is very slow and a good 
measurement of ‘A’ could be obtained. Unfortunately, 
no one has attempted to do this with molten A1,OJ 
nor does it seem possible to cool Al,O, rapidly enough 
to keep it in a liquid state down to the very low 
temperatures required ( _ 100 K). It is possible, how- 
ever, to obtain supercoolings of the order of several 
hundred degrees in rapidly cooled small molten drops. 
Because of the low probability of heterogeneous 
nucleation sites existing in the small droplets, the 
drops remain in the liquid state until the temperature 
is low enough for homogeneous nucleation to set in. 
This suggests the second alternative for estimating’A’, 
which is to exploit the experimentally observable outer 
surface temperature-time history of the molten oxide 
drop to infer the crystallization kinetic parameter ‘A’. 
The idea is that a detailed treatment of transient direc- 
tional solidification including the simultaneous effects 
of spherical geometry, finite crystallization kinetics, 
internal conduction and drop external heat loss would 
be able to rationalize the surface temperature-time 
history, thereby providing a sound basis for crys- 
tallization parameter inference. The surface lumin- 
osities of solidifying A1,O1 and ZrO, drops have been 
followed experimentally by Nelson et al. [ 1, 31. 

PHYSICAL MODEL 

We consider a drop losing heat by radiation and 
convection at its outer surface (see Fig. I). At time 
t = 0 a solidification front appears at the drop inter- 
face and propagates inward toward the center of the 
drop at a rate determined both by the conduction of 
heat through the annular crust and the kinetic rate of 
solidification given by equation (1). Since our goal 
is to produce a simple mathematical model of the 
solidification process that is compatible with available 
experimental observations, our study is based on the 
following assumptions : 

(1) The drop temperature is uniform and equal to 
T, at the instant of superficial solidification. 

(2) The temperature field within the drop is at all 
times spherically symmetric, with an annular crust 
growing at the expense of a molten but stationary 
core. 

(3) The solidification front is non-diffuse (sharp) 
on the scale of the droplet radius. 

(4) Radiation transfer through a semi-transparent 
melt/crust is ignored and, therefore, the instantaneous 
heat flux from the surface of the drop is a function of 
instantaneous surface temperature alone. 

(5) All physical properties are assumed to be con- 

FIG. 1. Spherical wave solidification of an initially super- 
cooled drop; illustrating temperature profile shape after 

thermal wave reaches drop centerline. 

stant and the density is the same for both liquid and 
solid. 

The only serious concern relative to the assump- 
tions stated above is whether or not during some stage 
of the solidifications of interest here the sharp inter- 
face assumption (number 3) breaks down, The liquid/ 
solid interface may not be stable and may ‘sprout’ 
bumps or dendrites which will race ahead of the inter- 
face. The undercooling of the melt increases with dis- 
tance from the solidification front (see Fig. 1). If the 
solidification velocity increases with subcooling, as is 
true for moderate subcoolings, then any momentary 
bump at the front will tend to find itself in a region of 
increased undercooling and therefore tend to move 
ahead of the rest of the solidification front, perhaps 
leading to a dendritic morphology. It seems doubtful 
that interface-kinetic parameters could be inferred 
when a highly non-spherical interface configuration 
prevails. 

GOVERNING EQUATIONS 

The integral profile method provides a practical and 
sufficiently accurate approach to the solution of phase 
change problems (Goodman [9]). In applying this 
method to the present problem reasonable functional 
forms for the radius dependence of the solid and liquid 
(melt) temperature fields, T,(r, t) and Tm(r, t), are 
postulated, containing undetermined functions of 
time. The problem is closed by imposing conditions 
derivable from the basic partial differential equations 
of heat conduction for the solid and melt regions. The 
undetermined functions of time we introduce are a 
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shape function x(t) for the temperature profile in the 
crust and the location of the thermal wave s(t) or the 
drop centerline temperature r,(t) (after 6 = 0) in the 
melt region (see Fig. 1). We satisfy energy conser- 
vation in an average sense over the solid and liquid 
regions, which are separated by the liquid/solid inter- 
face at instantaneous location r = t(t). Our integral- 
profile-method is pattened after Rosner and Epstein’s 
[4] treatment of the same heat transfer problem for a 
semi-infinite solid. 

T,(T, > T,). The exponent n has its usual value of 

4. However, in order to accurately model those cases 
for which the dominant mechanism of heat loss is 
radiative and T, >> T,, n may be anywhere from 

about 2.5 to 5.0 depending on the temperature depen- 
dence of the drop-surface emittance. 

Consideration of energy conservation at the 
solidification front dictates the local discontinuity of 
5 Tjar : 

The final equations governing the unknown func- 

tions T,(t), T,(t), t(t) and either 6(t) or T,.(t) are 
obtained by introducing reasonable temperature pro- 
files into the integral conditions (3)-(5). The function 
T,(t) is the temperature at the center of the drop; it 
remains constant and equal to the initial temperature 
To until 6 = 0. After S = 0, T,(t) increases toward 
Tmp. Before 6 = 0 second- and third-order poly- 

nomials are assumed for the temperature-distri- 
butions in the crust and melt, respectively, and they 
are given by 

In accord with the integral profile method, rather 
than demanding that T(r, t) satisfy the transient heat 
conduction equation everywhere, we only impose the 
integral form of this equation : 

r*[T,(r, t) - T,,] dr = asi?’ 

-K(t)-7X2;l (3) 

for the crust (R < r < 5) and the integral form of the 
conduction equation : 

d 5 
-j r’[T,,,(r,t)-T,]dr = a,t2 
dt 6 

(4) 

for the melt, where again b(t) is the effective pen- 
etration distance of the thermal wave in the melt, 
at which aT,,,/ar = 0. Beyond the time at which the 
thermal wave reaches the center of the drop, defined 
by s(t) = 0, T,,,(r, t) in the melt must satisfy the 
integral condition 

d 5 

-s dt o 
r’[T,(r,t)-T,]dr = a,,,<* 

+K(+TX2;; (5) 

together with a symmetry condition at the origin, 
namely (aT,,,/&),,, = 0. The above equations are 
subject to the surface heat loss condition 

= w[T:(t) - T”,,] +h[T,(t) - T,] 

(6) 

where T,(t) is the temperature at the surface of 
the drop, i.e. 7’,(R, t). Equation (6) was chosen to 
include combined radiative and convective heat losses 
to the surrounding environment at temperature 

T,(r, t)-- T,(t) R r-t(t) 
T,(t)---T,(t) 

=x(t)- ~ 
[ 1 r R-t(t) 

2 

(7) 

After 6 = 0 a second order polynomial is assumed for 
the melt : 

Tm(r, t)- T,(t) r 2 
T(t)-T,(t) = 5(t) [.--- 1 

(9) 

Note that the above profiles have the desirable prop- 
erty of temperature continuity at the solidification 
front [r = t(t)], and the desirable property of melt 
temperature profile compatibility at the instant 
s(t) = 0. Moreover, in writing equations (8) and (9) 
we have already satisfied the conditions aT,,#r = 0 

at Y = s(t) before 6 = 0 and aT,,,/& = 0 at r = 0 after 
6 = 0. The temperature profile proposed for the crust, 
equation (7), contains a shape function x(t) which 
must be determined as part of the solution. 

From equations (1), (2)-(4), and (6))(8) the fol- 
lowing system of dimensionless equations is obtained 
for purposes of numerical computation during the 
time span before S = 0 (see Nomenclature list for 
meanings of symbols) : 

dz 

dr 
_ (Q,-fL)x_,, 

z(1 -z) 
(10) 

dz 

YL= 
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+$w-Pm+fm (14) 

J, = i@(l -z”) 

-~(~~-#~)(l-z)[x(l+z)~3+z] (15) 

J2 = 8,z(z-A)[{z-& (z-A)]. (16) 

As soon as 6 reaches Y = 0, it becomes necessary to 
include the boundary condition aT,,,jdr = 0 at Y = 0 
and, therefore, to consider the global heat balance for 
the melt given by equation (5) and the corresponding 
temperature profile given by equation (9). Thus for 
the period after 6 = 0 we replace equations (lo), (12) 
and (16) by 

(17) 

dJz 
- = 2az(@, - 0,) f 422 $ 
dr (18) 

J2 = :z3(Oi-&)+:8,z3. (19) 

The solutions of equations (IO)-(16) must satisfy 
the initial conditions z = A = 1, J, = J, = 8, = 
Bi = 0 at r = 0. In order to provide useful starting 
values in a forward numerical integration scheme 
for this coupled system of equations, small-time 
power series solutions of the form 

were obtained. In addition, to utilize available com- 
puter subroutines, equations (lo)-(19) were con- 
verted to an equivalent coupled system of first-order 
ordinary differential equations. This somewhat tedi- 
ous algebraic operation included equating the con- 
duction-heat-flux jump condition, equation (10) 
before 6 = 0 or equation (17) after 6 = 0, with the 
kinetic rate equation, equation (13), to obtain an 
explicit differential equation where dzjdr has been 
eliminated in favor of the other dependent variables. 
Numerical integration was performed using a forward 
integration procedure based on the Gear [lo] method 
(see also Hindmarsh [ 111). 

t Freezing time predictions may be useful for inferring 
kinetic parameters if hypercooled droplet states, defined by 
the inequality c,(T,,- T,) > h,,, can be achieved. These 
predictions are beyond the scope of the present paper. 

PARAMETER SELECTION, NUMERICAL 

RESULTS AND KINETIC WAVE SPEED 

PARAMETER FOR PENDANT DROPS 

OF AL203 

Within the framework of the present model, drop 

solidification behavior depends on nine parameters ; 
namely, Bi,, Bi, $3, H, W, p,,, fi=, M, and k. Since little 
thermal conductivity data exists for subcooled molten 
refractory metal oxides, such as AlzOll, the solid-to- 
liquid thermal diffusivity and thermal conductivity 
ratios are assumed to be unity (a = k = 1.0). It can 
he shown from nucleation theory (Chalmers [ 121) that 
in the absence of foreign nucleation sites or vibration 
the supercooling in a melt is practically independent 
of cooling rate and approximately equal to 0.2 Tmp. 
Thus for an environment where molten microdrops 
cool largely undisturbed the appropriate value of the 
parameter Irr, is 0.8. Little is known about the 
solidification wave speed parameter W and, as 
already mentioned, this is the parameter we desire to 
infer from laboratory data. 

The values of the remaining five parameters, namely 

&, Bi, Q, ff, P,, are dictated by available drop 
solidification data. In particular we consider the situ- 
ation studied by Nelson et aE. [3] where a 2 mm- 
diameter, laser-melted Al,O, pendant droplet cooled 
and solidified in a 0.35 m s-’ flow of oxygen gas. 
During the course of the experiment the pendant drop 
was suspended from a single crystal sapphire rod. The 
drop surface luminosity was followed expe~mentaIIy 
and the luminosity trace is depicted in Fig. 2. After 
the laser was turned off the luminosity trace shows 
a smooth cooling curve for about 0.15 s, a sudden 
increase for about 21 ms followed by a relatively con- 
stant segment for about 0.6 s. The sudden increase in 
luminosity is believed to correspond to the release of 
latent heat from a solidification wave propagating 
into the supercooled drop. This brightening effect is 
referred to in the literature as the ‘spearpoint’ because 
of the spear-like profile observed on time exposed 
photographs of cooling metal droplets (‘sparks’). The 
final flat portion of the luminosity trace is believed to 
be the result of a balance between the heat loss at the 
surface and the latent heat generated within the drop 
as the solidification process continues. Note that there 
is a difficulty of accurately locating the termination of 
solidification (5 = 0 ‘event’) on the luminosity trace. 
For this reason, and because the present model indi- 
cates that the drop freezing time is rather insensitive 
to the solidification wave speed W for moderate-to- 
high values of W, freezing-time predictions are 
not particularly useful for inferring crystallization 
kineticst However, the luminosity rise time that 
defines the duration of the brightening event on the 
luminosity trace coufd possibly be used for this 
purpose, depending on the validity of the model 
described in the foregoing. 

Applying the Ranz and Marshall correlation (see, 
e.g., Bird et al. [ 131) for forced convection heat trans- 



2992 M. EPSTEIN and H. K. FAUSKI. 

Rise Xme (21 .O msec) 

r 
G llllllrllllllrlllllllllllllllllrlrllllllllllllllllllll~ 

-Jo.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Time, set 

FIG. 2. Comparison of normalized luminosity-time trace with predicted normalized drop surbce-time 
histories for wave speeds W = 20, 40. 100. Trace for 2 mm-diameter AlzOJ pendant drop from Nelson 

t’f ul. [3]. 

fer from a single sphere, the heat transfer coefficient 
for the Al,O, pendant drop in flowing oxygen is esti- 
mated to be h = 127.0 W m--2 Km’. This estimate was 
obtained by assuming a gas film temperature of 1200 
K at which the viscosity, thermal conductivity and 
heat capacity of oxygen are 5.52 x 10’ ’ kg m-’ s-‘, 
0.085 W m-’ K _I, and 1.12 x IO3 J kg-.’ IV’, respec- 
tively. The thermal conductivity of solid At,O, is 

about X-, = 7.5 W m-j K-’ (Wood and Deem f14]). 
Inserting these estimates into the definition of the 
‘convective Biot number’ gives Bi = 0.017. The value 
of the ‘radiation Biot number’ could be obtained if 
the total emissivity E of the Al,O, drop surface is 
known. The available data indicates an A120, emis- 
sivity of about 0.26 at a surface temperature of 1100 
K (see e.g., Hottel and Sarofim [IS]). Using this vatue 
our predicted solidification period is much longer than 
indicated by the luminosity trace shown in Fig. 2. If 
c is taken to be nearly unity, then the present theory 
predicts total drop solidification at about 0.8 s which 
compares favorably with the observed value of ~0.5 s 
(see below). We tentatively conclude that the effective 
emissivity of high-temperature Al,O, ( -2000 K) is 
nearly unity. The correctness of this conclusion must. 
of course, await the results of future high-temperature 
measurements of E for Al,O,. Note that the difference 
between the predicted and observed solidification 
times is not due to kinetics, as the drop sotidi~~~tion 
time is rather insensitive to the pre-exponential con- 
stant ‘A’ (or, equivalently W) for values of ‘A’ that are 
large enough to yield a surface brightening segment on 
the predicted drop cooling curve. Using E = 1, we 
estimate a radiation Biot number of Si, = 0.26 for the 
freezing Al,O, drop studied by Nelson it al. [3]. The 
values of the other pertinent parameters are H = 0.36, 
Q = 6.1, /$, = 0.8. and Br_ = 0.13. These dimen- 
sionless numbers were evaluated by inserting the 
following additional AlzO, property values : 
cs = 1.39 x IO’ J kg.-’ K- ’ (Stull and Prophet [16]), 
6~ = 3.8 x IO’ kg m I. and hrT= 1.16x IOh J kg ’ 
(Samsonov [ 171). 

Typical results of the numerical solutions are shown 

in Figs. 3,4, and 5 for wave speed parameters W = 2, 
100, and 1000, respectively. The dimensionless par- 
ameters used to generate these figures pertain to the 
experimental conditions investigated by Nelson et al. 
[3] and discussed in the foregoing. The solutions exhi- 
bited in Fig. 3 correspond to the case of very sluggish 
solidification kinetics (low W). In this limit surface 
heat losses dominate over the latent heat release rate 
within the drop and the sol~d/liquid interface tem- 
perature remains well below the equilibrium melting 
temperature. Different behavior is observed in Fig. 4 
for rapid interface kinetics ( W = 100). The solidi- 
fication rate starts out at the kinetic rate dictated 
by equation (1) (or, equivalently, equation (13)) then 
decelerates, as indicated by the kink in the z(r) curve 
about when the temperature at the drop center, (I,. 
starts rising. At a dimensionless time near r = 0.2 
(in the present case) the molten core has been raised 
essentially to the melting point [(Imp = (1 -/$,)/HI. 
and further heat rejection must occur solely through 

FIG. 3. Time histories (dimensionless) of drop surke tem- 
perature, O,, solidification front temperature. N,, drop center- 
line temperature, O,, and sohdification front location, z, for 
sluggish crystallization kinetics. Results for AlPOX properties 
and experimental conditions of Nelson PI at. [3]: H = 
0.36, Q = 6.1, Ir, = 0.8, pX = 0.13, Bi = 0.017, Bi, = 0.26, 

n = 4.0. 



Solidification of highly supercooled droplets 2993 

7 

FIG. 4. Time histories (dimensionless) of drop surface tem- 
perature, O,, solidification front temperature, O,, drop 
centerline temperature, BC, and solidification front location, 
7 for rapid crystallization kinetics. Results for AlzOl prop- 
&es and experimental conditions of Nelson et al. 131; 
H = 0.36, Q = 6.1, /& = 0.8, plLl = 0.13, Bi = 0.017, 

Bi, = 0.26, n = 4.0. 

the annular crust. The temperature at the solidi- 
fication front rises rapidly from the initial drop 
temperature (0, = 0) to the melting point and ulti- 
mately merges with the drop centerline temperature 
at r c 0.2. While the wave temperature is at or nearly 
equal to the equilibrium melting point the wave speed 
is conduction-heat-transfer limited. Interestingly 
enough, just before the freezing process is complete, 
both the solidification wave temperature and the drop 
center temperature fall below the melting point and 
the shrinking molten core returns to the subcooled 
condition. This occurs because near the completion 
of the solidification process the conduction-limited 
freezing rate tends to propagate more rapidly than is 
permitted by solidification kinetics. In the very rapid 
phase change kinetics regime (Fig. 5 for IV= 1000) 
the time to ‘heat’ the solidification front to the equi- 
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7 

FIG. 5. Time histories (dimensionless) of drop surface tem- 
perature, B,, solidification front temperature, f?,, drop 
centerline temperature, 0,, and solidification front location, 
- for very rapid crystallization kinetics. Results for Al,O, 
groperties and experimental conditions of Nelson et al. [3] ; 
H = 0.36, Q = 6.1, fiO = 0.8. /& = 0.13, Bi= 0.017, 

Sir = 0.26, n = 4.0. 

librium melting point T,,,, is so small that for all prac- 
tical purposes the front is at all times at T,,,, and the 
freezing rate of the droplet is exclusively heat-transfer 

controlled. 
Note that after the interface temperature and the 

drop centerline temperature coincide the temperature 
gradient in the molten core disappears and conditions 
are no longer favorable to dendritic growth (in pure 
materials). Clearly, early in the solidification process 
the temperature gradient in the melt is very large and 
the solid/liquid interface is unstable. However, the 
rate of kinetic solidification is so rapid during this 
period that dendrites may not have time to form. 

We note from Figs. 4 and 5 that the drop surface 
temperature 8, passes through a maximum value 
0 w,nlax when the solidification wave temperature is still 
below the equilibrium melting point B,,,r. Unfor- 
tunately, the surface luminosity trace for A1203 (Fig. 
2) only gives pyrometer readings (in arbitrary units) 
and therefore does not permit comparisons with the 
predicted B,,,,, to infer the wave speed parameter IV. 
However, the rise time on the luminosity trace can be 
used to estimate W. In particular, we seek to determine 
the value of W that brings the predicted time it takes 
for the surface temperature to rise to its maximum 
value into coincidence with the observed duration of 
the brightening segment on the luminosity trace of 
about 21.0 ms. There is a certain degree of arbi- 
trariness in applying this approach in that the pre- 
dicted surface temperature history e,(r) shows a very 
broad maximum (see Figs. 4 and 5) making it difficult 
to identify a specific theoretical surface temperature 
rise-time for comparison with the rise time on the 
luminosity trace. 

We proceed by inquiring whether there exists a 
choice of W for input into the model which is able to 
approximately reproduce the observed rise time and 
the very gradual attenuation that follows the abrupt 
rise on the luminosity trace. The best fit is obtained 
with W = 40, although one could argue that W’s as 
large as 60 and as small as 30 are also able to reconcile 
the luminosity trace. However, when W falls outside 
this range the model does not satisfactorily predict the 
observed brightening time. The comparison of the 
model for W = 40 with the luminosity trace is shown 
in Fig. 2. Also shown in the figure is the early Q,(z) 
behavior for the numerical cases W = 20, 100. In this 
figure the luminosity trace is normalized so that the 
brightness is zero at the onset of solidification and the 
maximum brightness along the plateau is taken to 
be unity. The predicted surface temperature Q,(r) is 
normalized with respect Q,,,,, so that it also only takes 
on values between zero and unity. 

Note that it is not meaningful to compare the func- 
tion 0,(z) with the shape of the luminosity trace in 
regions where the luminosity is changing, as the 
relation between light intensity and temperature is 
highly nonlinear. All we can determine from the 
luminosity trace is the time to maximum luminosity 
and the duration of the subsequent period in which a 
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slow decrease in brightness (or surface temperature) 
occurs. In this connection we observe from Fig. 2 that 
the model predicts that drop solidification is complete 
at about 0.8 s, while the luminosity trace indicates 
that the actual time at which solidification ceases is 
roughly 0.5 s. This level of agreement should be 
regarded as reasonable for problems of this type, 
especially in view of current physical property uncer- 
tainties for supercooled Al,O,, the possibility of the 
transition from planar to dentritic growth early in the 

solidification transient and the fact that the pendant 
drops do not form perfect spheres as assumed in the 
model. It is also worth noting that the predicted 
dimensionless thermal wave location at the end of the 
period of rapid tem~rature rise (i.e. at t = 21 ms in 
Fig. 2) is A = S/R = 0.37. Thus for the experimentally 
interesting case treated above, thermal wave pen- 
etration is an appreciable fraction of the sphere radius 
and is large enough to justify the present model which 
accounts for curvature effects in a spherically sym- 
metric system. 

To convert the dimensionless inference W = 40 to 
the physical crystallization wave speed parameter ‘A’, 
we insert the property value estimates for solid Al,O, 
and the pendant drop radius R = IO-’ m into 
the relation (definition) A = cr, W/R to obtain A = 
5.72 x lO-‘rn s-‘. 

KlNETiC WAVE SPEED PARAMETER FOR 

FREELY FALLING DROPS OF ZrO, AND AL,O, 

Quantitative information about the luminosity- 
time behavior of solidifying ZrO, droplets produced 
by the combustion of freely falling molten Zr spheres 
in oxygen/gas mixtures has been reported by Nelson 
et al. [I]. (The chemical conversion of Zr to ZrO, 
was complete before the onset of ZrOz solidification.) 
They converted the pyrometry readings to drop tem- 
peratures and the estimated drop-temperature ranges 
immediately before and after soliditication are shown 
by the shaded regions in Fig. 6. Note that the rapid rise 

Time, msec 

FIG. 6. Predicted surface temperature-time history for freely 
falling and solidifying 5.26 pm-diameter ZrOl drop; com- 
parison with measured drop temperature un~r~dinty band 

(Nelson et a/. [l]). 

in drop temperature due to the onset of solidification 
occurs in about 0.05 ms. Recall that the luminosity 
rise time for the pendant drop of AIZO, was much 
longer and approximately equal to 21 .O ms. 

It is of interest to use the present model to infer the 

crystallization wave speed parameter for ZrO?. The 
physical property values k, = 2.5 W m ’ K-’ (Wood 
and Deem [14]), (; = 650.0 J kg-’ K ’ (Stull and 
Prophet [16]), p = 5.4x IO’ kg mm’, h,, = 7.1 x 10” 
J kg ’ (Samsonov [ l7]), E = 1 .O, and Tml, = 2950 K 

for ZrO,; together with the experimental conditions 
T0 = 24OOk 70 K and R = 2.63 x IO-“ m satisfy all 
the model input requirements once the selection of W 
is made. Note that the dominant mode of heat loss 
for this case is radiation. Thus we assume n = 4 and 
h = 0 (or Bi = 0). Figure 6 presents the surface tem- 
perature-time history result of the computer solution 
for W = 400. After making a number of computer 
runs for various values of W, this value (+ 100) was 
selected as the most reasonable choice in that the 
corresponding predicted temperature falls within the 
measured drop-temperature uncertainty band and 
most of the predicted temperature increase occurs 
during the observed luminosity rise period. The physi- 
cal value of the kinetic wave speed parameter for ZrO, 
is, then, A = I. 1 m s-‘. This is noticeably above the 
inferred kinetic wave speed parameter for Ai,Ol. 
Thus it would appear that kinetic limitations to 
solidification in AlzO, are considerably more likely 
than in ZrO *. 

There is one additional study by Nelson et 01. [2] 
that should be mentioned here. Luminosity traces 
were obtained for laser-melted AlzO, drops shaken 
from the single crystal sapphire rod nlent~oned pre- 
viously and allowed to cool while falling freely in air. 
While the reported luminosity trace is too coarse to 
allow determination of the luminosity rise time as the 
heat of solidification is released, it is clear from the 
trace that the rise is rapid on a 10 ms time scale. It 
is possible, then, that under free-fall conditions the 
crystallization wave speed parameter for Al,O, is of 
the order of that inferred for ZrOz under similar free 
fall cooling conditions. If this is the case it certainly 
remains to be seen why sluggish kinetic rates dominate 
the superficial solidification of supercooled pendant 
drops and comparatively rapid interface kinetics 
initiate the solidification process within supercooled 
droplets in free fall. In view of this uncertainty, it 
seems necessary at present to assume that the kinetic 
wave speed parameter of the Jackson-Chalmers [5] 
rate law for A1,03 ranges from the low value inferred 
for pendant metal oxide drops up to the relatively 
high value inferred for freely falling ZrO, drops and, 
therefore, that ‘A’ for Al,O, falls within the interval 
0.057-1.1 m s ‘. 

ACCURACY OF THE INTEGRAL-PROFILE 

METHOD 

To gain confidence in the numerical results it is 
prudent to consider the accuracy of the integral 
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method by comparison with closely related exact 
(numerical) solutions. Of course, these exact solutions 
pertain to much less general problems than the one 
treated here. There is no need to check the accuracy 
of the integral method in the limit of simple kinetic 
control. If W is sufficiently small the temperature 
profiles in the annular crust and molten core of the 
droplet are uniform throughout most of the solidi- 
fication process, i.e. 0, z 0, x 0, (see Fig. 3). In 
this limit of kinetically controlled solidification 
the differential equation for the drop temperature 
becomes 

1 dOi 
- = -WKP,+~W-Bkl 3 dr 

+$(P.-lim+HH,)-z’~ (20) 

which, when combined with equation (13) for the 
kinetic rate of solidification, is all that is necessary to 
predict the drop temperature and solidification front 
location. The validity of this equation is now in- 
dependent of our profile method-and hence exact 
within the framework of our physical model. In terms 
of comparing the integral method with available solu- 
tions, it follows that the regime of conduction-limited 
solidification ( W -+ co) constitutes the most stringent 
test of accuracy of the method. 

Goodling and Khader [18] and Tao [19] numeri- 
cally solved the problem of freezing a saturated liquid 
(&, = 1 .O) inside a sphere cooling by convection. They 
reported the time it would take to completely freeze a 
drop in the limit of conduction control ( W + 03) and 
for Biot numbers 0.1 < Bi < 10.0 and dimensionless 
latent heats 0.1 < H < 7.5. The present method was 
found to faithfully reproduce their numerical results 
for the dependence of the solidification time on Bi 
and H to within an accuracy of 14%. For physically 
realistic values of H in the range 0.1-0.75, the results 
were especially encouraging, with the integral method 
representing the exact numerical solutions to better 
than 8%. 

CONCLUSIONS 

Using an integral method we have studied the com- 
bined effects of interface solidification kinetics and 
heat conduction on the solidification rates within 
highly supercooled refractory material drops losing 
heat by surface radiation and convection. By com- 
paring the predicted drop surface temperatur~time 
histories with the important features of available 
luminosity-time records for solidifying Al,03 and 
ZrO, drops we were able to infer the numerical values 
of the crystallization velocity coefficient for these 

materials in the Jackson-Chalmers [5] rate law. These 
inferences may be important to developing an under- 
standing of underwater aluminum ignition as it is has 
been postulated that A1,03 crystal growth represents 
the barrier to chemical energy releases during an alu- 
minum/water physical explosion (Epstein and Fauske 
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